Ken Monks
monks.scranton.edu
proveitmath.org

100 Theorems in Lurch

Freek Wiedijk maintains a list tracking progress of theorem provers formalizing 100 classic theorems in mathematics. On this page we collect all of the proofs on that list that we have formalized in Lurch to date.

Since Lurch supports proofs in any context, deciding what actually constitutes a formalization of one of the proofs is not obvious. For example, one can simply add each of the 100 theorems to the context of a Lurch document as a rule and they will all be 'proven' trivially.

To address this, we self-impose our own standard for what qualifies. Consistent with Lurch's philosophy, we consider a theorem to be proved by Lurch if the proof contains, at minimum, the level of detail you might find for the proof of that theorem in a textbook, spotting all of the other details as part of the context. Citing a proof of the theorem in a textbook or other valid source can certify that this criteria has been met.

100 Theorem Checklist

The following table is reproduced from here (if there is a newer version of that page let me know). A green check mark ( ✔︎ ) in the first column indicates that Lurch has proved the theorem listed, while a yellow question mark ( ? ) indicates that it has not.

Click on a completed theorem to open its proof in Lurch.

Status: ✔︎ 1 proof verified, ? 99 unverified

Done # Theorem Author Date
✔︎ 1 The Irrationality of the Square Root of 2 Pythagoras and his school 500 B.C.
? 2 Fundamental Theorem of Algebra Karl Frederich Gauss 1799
? 3 The Denumerability of the Rational Numbers Georg Cantor 1867
? 4 Pythagorean Theorem Pythagoras and his school 500 B.C.
? 5 Prime Number Theorem
Jacques Hadamard and Charles-Jean de la Vallee Poussin (separately)
1896
? 6 Godel’s Incompleteness Theorem Kurt Godel 1931
? 7 Law of Quadratic Reciprocity Karl Frederich Gauss 1801
? 8 The Impossibility of Trisecting the Angle and Doubling the Cube Pierre Wantzel 1837
? 9 The Area of a Circle Archimedes 225 B.C.
? 10 Euler’s Generalization of Fermat’s Little Theorem
(Fermat’s Little Theorem)
Leonhard Euler
(Pierre de Fermat)
1760
(1640)
? 11 The Infinitude of Primes Euclid 300 B.C.
? 12 The Independence of the Parallel Postulate Karl Frederich Gauss, Janos Bolyai, Nikolai Lobachevsky, G.F. Bernhard Riemann collectively 1870-1880
? 13 Polyhedron Formula Leonhard Euler 1751
? 14 Euler’s Summation of 1 + (1/2)^2 + (1/3)^2 + …. Leonhard Euler 1734
? 15 Fundamental Theorem of Integral Calculus Gottfried Wilhelm von Leibniz 1686
? 16 Insolvability of General Higher Degree Equations Niels Henrik Abel 1824
? 17 DeMoivre’s Theorem Abraham DeMoivre 1730
? 18 Liouville’s Theorem and the Construction of Trancendental Numbers Joseph Liouville 1844
? 19 Four Squares Theorem Joseph-Louis Lagrange 1770
? 20 All Primes Equal the Sum of Two Squares ? ?
? 21 Green’s Theorem George Green 1828
? 22 The Non-Denumerability of the Continuum Georg Cantor 1874
? 23 Formula for Pythagorean Triples Euclid 300 B.C.
? 24 The Undecidability of the Coninuum Hypothesis Paul Cohen 1963
? 25 Schroeder-Bernstein Theorem ? ?
? 26 Leibnitz’s Series for Pi Gottfried Wilhelm von Leibniz 1674
? 27 Sum of the Angles of a Triangle Euclid 300 B.C.
? 28 Pascal’s Hexagon Theorem Blaise Pascal 1640
? 29 Feuerbach’s Theorem Karl Wilhelm Feuerbach 1822
? 30 The Ballot Problem J.L.F. Bertrand 1887
? 31 Ramsey’s Theorem F.P. Ramsey 1930
? 32 The Four Color Problem Kenneth Appel and Wolfgang Haken 1976
? 33 Fermat’s Last Theorem Andrew Wiles 1993
? 34 Divergence of the Harmonic Series Nicole Oresme 1350
? 35 Taylor’s Theorem Brook Taylor 1715
? 36 Brouwer Fixed Point Theorem L.E.J. Brouwer 1910
? 37 The Solution of a Cubic Scipione Del Ferro 1500
? 38 Arithmetic Mean/Geometric Mean
(Proof by Backward Induction)
(Polya Proof)

Augustin-Louis Cauchy
George Polya

?
?
? 39 Solutions to Pell’s Equation Leonhard Euler 1759
? 40 Minkowski’s Fundamental Theorem Hermann Minkowski 1896
? 41 Puiseux’s Theorem Victor Puiseux (based on a discovery of Isaac Newton of 1671) 1850
? 42 Sum of the Reciprocals of the Triangular Numbers Gottfried Wilhelm von Leibniz 1672
? 43 The Isoperimetric Theorem Jacob Steiner 1838
? 44 The Binomial Theorem Isaac Newton 1665
? 45 The Partition Theorem Leonhard Euler 1740
? 46 The Solution of the General Quartic Equation Lodovico Ferrari 1545
? 47 The Central Limit Theorem ? ?
? 48 Dirichlet’s Theorem Peter Lejune Dirichlet 1837
? 49 The Cayley-Hamilton Thoerem Arthur Cayley 1858
? 50 The Number of Platonic Solids Theaetetus 400 B.C.
? 51 Wilson’s Theorem Joseph-Louis Lagrange 1773
? 52 The Number of Subsets of a Set ? ?
? 53 Pi is Trancendental Ferdinand Lindemann 1882
? 54 Konigsberg Bridges Problem Leonhard Euler 1736
? 55 Product of Segments of Chords Euclid 300 B.C.
? 56 The Hermite-Lindemann Transcendence Theorem Ferdinand Lindemann 1882
? 57 Heron’s Formula Heron of Alexandria 75
? 58 Formula for the Number of Combinations ? ?
? 59 The Laws of Large Numbers <many> <many>
? 60 Bezout’s Theorem Etienne Bezout ?
? 61 Theorem of Ceva Giovanni Ceva 1678
? 62 Fair Games Theorem ? ?
? 63 Cantor’s Theorem Georg Cantor 1891
? 64 L’Hopital’s Rule John Bernoulli 1696?
? 65 Isosceles Triangle Theorem Euclid 300 B.C.
? 66 Sum of a Geometric Series Archimedes 260 B.C.?
? 67 e is Transcendental Charles Hermite 1873
? 68 Sum of an arithmetic series Babylonians 1700 B.C.
? 69 Greatest Common Divisor Algorithm Euclid 300 B.C.
? 70 The Perfect Number Theorem Euclid 300 B.C.
? 71 Order of a Subgroup Joseph-Louis Lagrange 1802
? 72 Sylow’s Theorem Ludwig Sylow 1870
? 73 Ascending or Descending Sequences Paul Erdos and G. Szekeres 1935
? 74 The Principle of Mathematical Induction Levi ben Gerson 1321
? 75 The Mean Value Theorem Augustine-Louis Cauchy 1823
? 76 Fourier Series Joseph Fourier 1811
? 77 Sum of kth powers Jakob Bernouilli 1713
? 78 The Cauchy-Schwarz Inequality Augustine-Louis Cauchy 1814?
? 79 The Intermediate Value Theorem Augustine-Louis Cauchy 1821
? 80 The Fundamental Theorem of Arithmetic Euclid 300 B.C.
? 81 Divergence of the Prime Reciprocal Series Leonhard Euler 1734?
? 82 Dissection of Cubes (J.E. Littlewood’s ‘elegant’ proof) R.L. Brooks 1940
? 83 The Friendship Theorem Paul Erdos, Alfred Renyi, Vera Sos 1966
? 84 Morley’s Theorem Frank Morley 1899
? 85 Divisibility by 3 Rule ? ?
? 86 Lebesgue Measure and Integration Henri Lebesgue 1902
? 87 Desargues’s Theorem Gerard Desargues 1650
? 88 Derangements Formula ? ?
? 89 The Factor and Remainder Theorems ? ?
? 90 Stirling’s Formula James Stirling 1730
? 91 The Triangle Inequality ? ?
? 92 Pick’s Theorem George Pick 1899
? 93 The Birthday Problem ? ?
? 94 The Law of Cosines Francois Viete 1579
? 95 Ptolemy’s Theorem Ptolemy 120?
? 96 Principle of Inclusion/Exclusion ? ?
? 97 Cramer’s Rule Gabriel Cramer 1750
? 98 Bertrand’s Postulate J.L.F. Bertrand 1860?
? 99 Buffon Needle Problem Comte de Buffon 1733
? 100 Descartes Rule of Signs Rene Descartes 1637